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ABSTRACT 

Multiple optical measurement techniques have been applied for the investigation of a propeller-wing wind tunnel 

model. The (half) wind tunnel model is equipped with a nine bladed propeller and its wing has active Coanda blowing 

over the whole span of the wing. The aim of the investigation is to gain understanding of the flow phenomena, 

especially the interaction of the periodic propeller slipstream with the Coanda blowing. The optical measurement 

techniques used are: stereoscopic Particle Image Velocimetry (for investigating the flow field behind the propeller till 

the end of the wing), mono Particle Image Velocimetry (for the investigation of the Coanda blowing), Background 

Oriented Schlieren (for investigating the density gradients in the propeller slipstream) and Projected Pattern Correlation 

(for the blade torsion and deformation). This paper discusses the application of these methods during a single wind 

tunnel entry in an industrial wind tunnel facility. 

INTRODUCTION 

Non-intrusive image-based measurement techniques are advantageous for the investigation of propeller flows [1] and 

are particularly useful for the investigation of effects such as thrust reverse [2] or propeller slipstream structures [3-4]. 

For propeller blade investigations techniques as Pressure Sensitive Paint [5] (for blade forces and moments) and oil film 

interferometry (for transition detection and skin-friction measurements) [6] are under development and have been 

shown to be feasible in industrial applications. Datasets obtained from advanced measurement techniques are of 

eminent importance for the validation of numerical codes [7]. In particular, the simultaneous measurement of velocity 

and propeller bending should be pursued in order to determine any influence of the modified blade orientation on the 

velocity field [8] The German research project ‘Bürgernahes Flugzeug (BNF)’ (translated: community friendly aircraft) 

is dedicated to the design of a quiet, efficient, short take-off and landings (QESTOL) aircraft which should alleviate 

cities and their residents from aircraft noise [10-14]. In order to enable short take-off and landings the aircraft is 

equipped with a propeller, in addition high lift capabilities are provided by active flow control using Coanda blowing. A 

3D drawing of the model is given in Fig. 1. A close-up of the Coanda blowing is shown in Fig. 2. The various 

experimental aerodynamic aspects of the propeller behavior (slipstream effects, active blowing, bending and torsion 

etc.) are investigated within the DLR project ‘SAMURAI’, dedicated to the simultaneous application of multiple image-

based measurement techniques, such as (stereoscopic and tomographic) Particle Image Velocimetry (PIV), Background 

Oriented Schlieren (BOS), Projected Pattern Correlation (PROPAC), Temperature and Pressure Sensitive Paint 

   

 

 

 

 Figure 1 3D view of the BNF 

wind tunnel model. 

 Figure 2 Close-up of the Coanda 

blowing region on the wing (Ref. 9). 
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(TSP/PSP) and Acoustic Array techniques. These image-based measurement techniques have been applied for the 

investigation of the propeller effects of the BNF aircraft, and the investigation of the active Coanda blowing. The 

resulting datasets will be used for a future validation of CFD results. The measurements are intended to provide 

simultaneous data on various propeller aspects, such as the flow and density gradient distributions in the propeller 

slipstream, the bending and torsion of the propeller blades at specified settings. Each of these properties is of 

importance for a solid validation. The present paper discusses several measurement techniques which have been applied 

during one wind tunnel entry for the investigation of several propeller induced properties. The propeller slipstream and 

the active flow control have been analyzed with stereoscopic and mono Particle Image Velocimetry (PIV), respectively. 

The helical structures at the inboard section of the propeller slipstream have been visualized with the Background 

Oriented Schlieren (BOS) method. Finally, the propeller blade bending and torsion are investigated using Projected 

Pattern Correlation (PROPAC). 

MEASUREMENT SET-UP 

A. Wind tunnel and wind tunnel model 

The measurements are performed in the DNW-NWB low speed wind tunnel facility in Braunschweig (Germany). The 

closed test section has a cross-sectional area of 3.25 x 2.8 m
2
. The wind tunnel is used in a closed test section 

configuration and a contraction ratio of 1:5.6. The BNF wind tunnel model is a half model (wing span about 1.7 m) 

equipped with a propeller (diameter 0.66 m) and active flow control by means of Coanda blowing over the gapless flap. 

The Coanda blowing consists of 3 blowing channels within the model, each of which can be individually controlled. 

The cruise angle of attack is -5 deg. The propeller blade pitch angle is 28 deg (at 75% of propeller radius). For the wind 

tunnel measurements the wind tunnel velocity and the 

propeller revolutions will remain fixed. The measurement 

parameters are listed in Table 1. The Coanda blowing 

within the wind tunnel model is performed using 

pressurized air in three sections along the span. Initially, 

uniform blowing with a pressure in the plenum of 0.55 bar 

in each section was anticipated. It turned out during the 

measurement campaign that the pressure was not 

sufficient to ensure attached flow over the flap. With 

some time-consuming trial and error, the mid-section 

blowing had to be increased to 1.8 bar at which attached 

flow occurred. Later investigations of the internal blowing 

channel revealed that a small ragged edge was responsible for the irregular blowing at the mid span section. The whole 

set-up and execution of the measurement campaign was performed in less than 10 wind tunnel days. 

 

 

  

 

Figure 3 PIV Set-up in wind tunnel (dimensions in proportion).  Figure 4 PIV camera arrangement. 

B. Particle Image Velocimetry (PIV) 

The propeller slipstream has been investigated with a double stereoscopic Particle Image Velocimetry (PIV) set-up. An 

overview of the PIV set-up is presented in Fig. 3. Homogeneous distribution of seeding (DEHS particles with an 

average diameter of 1 µm) was ensured by inserted seeding particles downstream of the model. A dedicated hose of the 

seeding system was directed through the Coanda blowing system in order to allow sufficient seeding in the blowing 

region. Unfortunately since the recent renovation of the DNW-NWB facility only limited amounts of seeding are 

Table 1  Measurement settings  

Parameter  Value  
  

Angle of attack  -5 deg  

Wind tunnel velocity  51 m/s  

Propeller blade pitch angle (β0.75)  28 deg  

Propeller diameter  660 mm  

RPM  7144  

Advance ratio  0.649  
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allowed. The combined field of view of both PIV systems visualizes the slipstream from just behind the propeller 

(Cameras C2 and C4) to end of the engine pod (Cameras C1 and C3), see Fig. 4. The main reason for arranging the 

cameras in the cramped space at the wing root is that it offers the ability to rotate the cameras simultaneously with the 

angle of attack of the wind tunnel model without requiring an additional calibration. The active blowing has been 

measured with a mono-PIV set-up (Camera 5). All cameras are annotated C1-5 in Fig. 4; corresponding mirrors are 

annotated M1-5. The lenses (all Carl Zeiss) used were: 50 mm for Camera 2, 35 mm for Cams 1, 3 and 4 and 135 mm 

for Camera 5. Four PCO Edge sCMOS cameras (2560 x 2160 pixel) have been used for both stereoscopic 

measurements, a PCO 4000 CCD camera (4008 x 2672 pixel) for the mono-PIV measurements of the flap blowing. For 

the laser light sheet generation two double pulse Nd:YAG laser systems (BigSky CFR and Spitlight 1000) were used 

simultaneously for the illumination of the extended field of view. The laser and camera systems were triggered with a 

TTL signal from the propeller (one signal per revolution). 

C. Background Oriented Schlieren (BOS) 

The BOS method has been applied for determining instantaneous distributions of the density gradients in the propeller 

slipstream. A random background dot pattern was illuminated by diffuse scattered pulsed Nd:YAG laser in order to 

reduce laser speckle noise. The illumination can be seen in Fig. 5. The dot pattern has been recorded with an additional 

PCO 4000 CCD camera (4008 x 2672 pixel). The BOS imaging consisted of recording wind off images, followed by a 

recording of the dot pattern in double-frame mode, with an appropriate (i.e. adapted to the convection velocity of the 

propeller tip vortices) pulse delay. This allows to either correlate the results obtained at the two time instances (resulting 

in density gradient variations), or to correlate each of the illuminations with the reference image. Results of both 

approaches will be discussed. 

 

  
Figure 5 Illumination of BOS pattern. Figure 6 BOS pattern. 

 

 

 

 

Figure 7 Propeller with 

projected pattern. 
 Figure 8 Sample camera image of the blade with reference 

markers and projected pattern. 

D. Projected Pattern Correlation (PROPAC) 

Information on the actual bending and torsion of the propeller blades are required for an accurate CFD analysis as any 

deviation from a rigid stiff propeller blade may induce slightly different associated pressure and velocity field 

distributions. In the current paper the 3D-surface of the blade is determined with the Projected Pattern Correlation 
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(PROPAC) technique (Fig. 7). The dot pattern was generated with a gobo projector and imaged with a stereo camera 

system of AVT GX-3300 CCD cameras (3296 x 2472 pixel). The resolution of the camera was binned to 2MP in order 

to achieve an acquisition frame rate of 20 Hz. The pulsed laser used as light source of the projector ensures a sufficient 

illumination within short light pulses to avoid blade movement effects. The measured blade was painted white which 

further improves the illumination efficiency. Because of the projective application of the random pattern on the wing 

the pattern is fixed in space and the blades moves through the pattern.  Additional markers were applied in the root area 

of the blade as blade fixed reference, see Fig. 8. 

RESULTS 

The objectives of the measurements are multifold: the measurement techniques are used to supplement each other in 

order to provide experimental data on important propeller aspects. In addition, the specific design of the QESTOL 

aircraft with active blowing also requires an investigation. As mentioned before the regular active blowing parameter in 

the mid span section had to be adjusted to 1.8 bar, as opposed to 0.55 bar in the root and tip section. This setting 

enabled attached flow over the flap in the propeller slipstream. Significant, unscheduled, wind tunnel time was spent on 

determining appropriate settings for the blowing parameters. Essentially the remaining test matrix was a compromise 

between obtaining the required measurement data while maintaining qualitative useful aerodynamic data. In addition, 

the wind tunnel campaign serves as one of the first campaigns with simultaneous application of advanced measurement 

techniques. The foremost priority is the harmonization between the various measurement techniques. The main 

parameters during the measurements are listed in Table 1. The results of (some of) the applied various measurement 

techniques are discussed in this section. 

A. Particle Image Velocimetry 

Both stereoscopic and mono Particle Image Velocimetry has been applied. The results of the propeller slipstream 

measurement will be used for a CFD validation and therefore all velocity components are of interest. The active flap 

blowing will be primarily investigated for attached or detached flow and mono PIV is sufficient to determine the state 

of the flow. All data has been analyzed with PIVview using multigrid interrogation with image deformation (Final 

window size 32 pixel with 50% overlap). The combined field of view of the stereoscopic set-up is approximately 835 

by 320 mm (with a vector resolution of 2.66 mm); the field of view for the mono camera is 217 by 270 mm (with a 

vector resolution of 0.56 mm). Figure 9a presents the averaged flow field distribution over 1000 instantaneous datasets 

allowing a statistically relevant result. The propeller slipstream is captured and the axial velocity is the highest at the 

trailing edge of the wing. Since the result was obtained as one of the first measurements (e.g. without the internal 

channel blowing adjustments), the flow at the flap is separated, with a small vortex at the flap tip location. The 

corresponding RMS values are shown in Fig. 9b. Here the individual tip vortices and wake traces can be clearly seen in 

the propeller slipstream, as well as the separated region over the flap, apart from a very small region close to the flap 

generated by the Coanda blowing. Due to the specific propeller (blade) design, the slipstream has higher convection 

velocities as the tip vortices. At the position of the wing leading edge the inner part of the propeller slipstream has 

convected further as the tip vortices. The tip vortices now become entrained between the free stream flow and the 

highly accelerated slipstream. The tip vortices are forced to roll-up in pairs. 

 

  
(a) Average velocity distribution (b) RMS velocity distribution 

Figure 9 Results obtained with averaging over 1000 instantaneous data sets (Blowing 0.55 bar in all channels). 

Only 10% of the vectors are shown. 

 

From the initial PIV measurements, as well as from surface pressure measurements, it was immediately clear that the 

active Coanda blowing was not behaving appropriately. Various unscheduled extra tests were performed to tune and 

optimize the blowing parameters. However, due to these additional tests the remaining wind tunnel program had to be 

reduced. Therefore, it was decided to reduce the number of snapshots for the PIV measurements: the remaining results 

are averaged over 50 samples and consequently no RMS data will be presented. 

 

The evolution of the vortex and the rolling of the vortex are investigated in more detail in the results of the phase-locked 
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PIV measurements in Fig. 10. One blade-to-blade passage (40 deg) has been measured at 5 deg intervals, where 10 deg 

intervals are shown, each with 50 snapshots. One of the interesting observations that can be made is that the tip vortex 

locations are distinct, but that the upper part of the associated blade wake traces (with a mild negative vorticity) tends to 

move towards the next vortex. The previously identified vortex roll-up can be clearly detected at the leading edge 

region. The interaction of the various shearlayers and the onset of the vortex roll-up is visible in the consecutive results. 

The roll-up of two subsequent vortices is then maintained further downstream. The nacelle induced vortex seems to 

have only a mild influence on the wing boundary layer and it may therefore be assumed that there will be only a small 

periodic effect on the active blowing in the flap region 

 

  
(a) Phase angle: 0 deg (b) Phase angle: 10 deg 

  
(c) Phase angle: 20 deg (d) Phase angle: 30 deg 

Figure 10 PIV (normalized) vorticity results of 1 blade-to-blade rotation with at 10 deg phase difference 

(intermediate results at 5 deg not shown.) Only 10% of the vectors are shown. 

 

 

  
(a) Angle of attack: -5 deg (regular blowing) (b) Angle of attack: -5 deg (no blowing) 

  
(c) Angle of attack: 0 deg (regular blowing) (d) Angle of attack: 5 deg (regular blowing) 

Figure 11 PIV results (axial velocity) at several angles of attack, and compared to “blowing off” (at angle of attack 

of -5 deg) Only 10% of the vectors are shown. 

 

The cruise angle of attack of the wing design of the QESTOL aircraft is at -5 deg. The influence of an angle of attack 

increase is presented in Fig. 11. The effect on the propeller slipstream is minimal, in fact only at the transition from the 

wing to the flap the suction peak is seen to decrease and shift forward. The effect on the active blowing (attached flow) 

is accordingly more relevant for the lower angles of attack. A comparison with no blowing (Fig. 11b) indicates that the 
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flow is separated and that the suction region (at the wing trailing edge flap leading edge) is significantly decreased. It 

also shows that the slipstream velocity is larger for active blowing and a larger part of the propeller slipstream is 

convecting over the suction side of the wing due to increased lift coefficients (up to α = 0 deg). The increase in the 

angle of attack also indicates that the nacelle causes the slipstream to increase in thickness. In addition, the nacelle 

induced separation causes the flow over the wing to reattach further downstream. 

B. Background Oriented Schlieren 

The regular BOS evaluation (i.e. correlation of images of a flow containing a density gradient with a reference image) is 

sensitive to temperature gradients (as these may cause additional density gradient) as well as to vibrations (these may 

cause an extra artificial displacement). This implies that at performing BOS measurements in wind tunnels both sources 

of error need to be excluded, if quantitative density (gradient) results are required. If however only a quantitative 

visualization is pursued, then it might be sufficient to correlate two images at a given time delay (similar to double-

pulsed PIV images). Figure 12 shows two BOS results obtained at two different phase angle positions during one wind 

tunnel run. Each of the results is an average over 20 instantaneous BOS gradients at phase locked blade positions and is 

obtained by correlating the BOS image with a reference image of the BOS pattern. Due to small expansion or 

contraction in the continuously running wind tunnel an additional shift is introduced in the BOS results obtained at later 

time instants. Figure 12a and 12b show the result with a pixel shift of 0.28 and 0.47 pixel subtracted, respectively 

(obtained from a region without density gradients). For full appreciation of the helical and slipstream data, combined 

PIV and BOS results are shown in Fig. A; and Animation 1 in Appendix A shows simultaneous PIV and BOS results. 

 

 

 

 
(a) Phase angle: 0 deg (with 0.28 pixel shift subtracted)  (b) Phase angle: 35 deg (with 0.47 pixel shift 

subtracted) 

Figure 12 Regular BOS results (correlation with reference image). 

 

 

  
(a) Phase angle: 0 deg (b) Phase angle: 10 deg 

  
(c) Phase angle: 20 deg (d) Phase angle: 30 deg 

Figure 13 BOS results of 1 blade-to-blade rotation with a 10 deg phase difference. 

 

The apparent shift can be suppressed by correlating the double images obtained at an appropriate time delay 

(corresponding to approximately the vortex convection velocity). This results in density gradient variations, but still 

allows a qualitative visualization of the propeller slipstream [4]. BOS results at several phase angle positions are given 

in Fig. 13. The projected area of the BOS results is located in the propeller symmetry plane and in the plane of the wing 
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(see also Fig. 5 and Fig. A). The results are all obtained by correlating double-frames and averaging over 20 samples at 

one phase locked propeller blade position. Since BOS integrates by definition over the light path, the 3D helical 

slipstream is projected and upward and downward moving structures are superimposed. Projected helical paths 

orientated \\ are located above the wing; and paths orientated // are located below the wing. The magnitude of the 

density gradient variations is displayed and a threshold value of 0.5 is selected so that the slipstream stands out from the 

background. The propeller blade tip vortices behave like a helix for about one radius behind the propeller. Part of the 

structures at the valley of the parabola seem missing or below the threshold value, actually in these regions the density 

gradient variations are shallow and therefore are not visible (note that these missing parts are visible in Fig. 12). It can 

also be seen that the helical slipstream becomes stronger after one radius behind the propeller. The BOS results are 

projection of the helical vortical structures in the propeller slipstream in the symmetry of the propeller. The presence of 

the wing will induce a low pressure region at its leading edge which causes a disjunction of the helical tip vortex. This 

disjunction is clearly visible in the slipstream structures just in front of the wing leading edge in Fig. 13. 

C. Projected Pattern Correlation 

A stereoscopic camera set up allows the use of the evaluation principles and algorithms of the Image Pattern Correlation 

Technique (IPCT), also known as Digital Image Correlation (DIC) [15]. It combines image correlation algorithm also 

used for PIV and BOS evaluation to find corresponding areas in the different camera views. A triangulation of the point 

correspondences based on the stereo camera calibration delivers the 3D-coordinates of the measured surface in the next 

step. Due to the projective application of the random pattern, the pattern is shifted with respect to the measured surface 

as well. Nevertheless a reconstruction of the 3D-surface for the single stereo pairs is possible. As distinguished from 

IPCT/ DIC, where the pattern is fixed to the surface, a direct deformation measurement by a direct correlation of 

different time steps or deformation conditions is not possible. The deformation is determined by the subtraction of a 

reference surface from the deformed surface. Hence the deformation is calculated only in a defined direction and 

deformations in the perpendicular plane will be neglected. 

 

  

  
Figure 14 PROPAC results of 4 consecutive recordings at α = -5 deg and 5105 RPM. 

 

Figure 14 shows sample results of 4 consecutive stereo recordings with a propeller speed of 5105 RPM and α = -5 deg. 

Because of the noisy rising edge of the incoming trigger of the propeller TTL signal, a triggered phase locked recording 

was not possible for the current measurement campaign. The image acquisition was therefore performed with a fixed 

frame rate adapted to the propeller rotation speed. The shift between the frame rate and the rotation speed of the 

propeller led to a slight shift of the blade position in consecutive frames. This still enables to obtain results of the blade 

deformation at several fixed phase positions but requires intensive manual post-processing for matching the markers 

with individual recordings, a process which is still ongoing. A reference area was defined between the blade fixed 

markers on the root to enable a mapping of the measurement results to the undeformed reference surface measured at no 

wind and no rotation conditions. The deformation (Dz), color-coded in Fig. 14, was determined by subtracting the 

reference surface from the mapped measurement surface data. Looking to the 4 sample results in Fig. 14 it can be seen 

that the blade oscillates with amplitudes up to 2.5 mm at the blade tip. Even torsion of the blade can be seen. The 

bending results show a similar trend with a FEM analysis for static conditions (at higher loading conditions). A strain-
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gage was installed on the propeller and integration of the signals of this sensor indicates that the second harmonic nearly 

coincides with the first flapping mode [16]. This supports the observation of the significant bending oscillation. For an 

analysis of the bending and torsion behavior of the blade the results must be transferred from the camera fixed 

coordinate system to a blade fixed coordinate system to enable a well-defined transfer of the acquired data to numerical 

simulations. 

OUTLOOK 

The application of simultaneous advanced measurement techniques remains relevant for multiple flow field phenomena. 

A second measurement campaign with time resolved tomographic PIV and the Acoustic Array technique for acoustic-

PIV causality correlation of flap side edge noise has been conducted recently. Figure 15 shows a part of the set-up on 

the same QESTOL wind tunnel model in the same wind tunnel but in a partially open acoustic wind tunnel 

configuration (a floor plate was installed for acoustic considerations). A “fat sheet” tomographic measurement with a 

measurement volume: 390 x 70 x 6 mm
3
 and a time resolution up to 3000 vector fields per second were used. Figure 16 

and 17 show preliminary results of the tomographic PIV measurement and the acoustic array technique, respectively. 

The analysis is still ongoing and will focus on correlating the velocity (fluctuation) information with the acoustic 

pressure signals. 

 

 

 

 

 Figure 15 Set-up in open wind tunnel configuration.  

 

 

 

  
Figure 16 Preliminary time-resolved 

tomographic PIV result. 

 (a) (b) 

 Figure 17 Preliminary beamforming maps. 

CONCLUSIONS 

The simultaneous application of multiple advanced image-based measurements techniques has been reported for the 

investigation of a propeller aircraft with active blowing. The particular design of the aircraft requires experimental input 

of the various flow features. The main objective is to determine the experimental flow and propeller features 

simultaneously so that the propeller and wind tunnel properties can be related. In addition the simultaneous acquisition 

of different flow features establishes a database of experimental data which will be used in a future CFD validation. The 

applied techniques consisted of: a double stereoscopic Particle Image Velocimetry system (for the investigation of the 

velocity and vorticity in the propeller slipstream), a mono-PIV system (for investigation of the active blowing flow 

field), a Background Oriented Schlieren system (for determining the density gradients in the propeller slipstream) and a 

stereoscopic projected pattern system (for determining the bending and torsion of the propeller blades). Using these 

techniques a tip vortex roll-up was determined at the location wind leading, in addition to the disjunction of the helical 

vortex path with the BOS technique. The active blowing was found to induce a higher axial velocity in the propeller 
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slipstream. The projected pattern results indicate that significant bending of the propeller blade is present. Ongoing 

work in the project is the correlation of time-resolved tomographic PIV velocity field data (and fluctuations) with 

acoustic pressure signals (obtained with the Acoustic Array technique) for the investigation of flap edge noise. 

APPENDIX A 

 

 

 
Animation 1 PIV and BOS animation of results at 8 

consecutive propeller phase angles (The animation is only 

available in the digital PDF file). 
Figure A Combined PIV and BOS 

results. 
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