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1 Introduction

1.1  BOS and 3DBOS

Density field visualization such as strioscopy has been 

used extensively to understand fluid mechanics phenomena 

such as compressibility or thermal effects. Yet, the mostly 

qualitative information issued from this measurement does 

not give enough information to refine computational fluid 

dynamics codes. Background-oriented schlieren (BOS) 

is one way to obtain quantitative measurement of density 

gradients. Density fluctuations in a fluid come with inho-

mogeneities of the optical index. The BOS technique is 

based on observation of ray deviations through a medium 

of inhomogeneous optical index. The BOS optical setting 

is remarkably simple: it only requires that the flow under 

study is placed in between a camera and some textured 

background on which the camera is focused. Comparing 

the images of the background with or without the flow 

using digital image correlation techniques reveals dis-

placements which are the projections of the light ray devi-

ations. First BOS methods have been proposed in the early 

2000 years (Dalziel et al. 2000; Raffel et al. 2000; Meier 

2002), a recent review of BOS techniques can be found 

in Raffel (2015).

We focus on 3DBOS, i.e., the numerical reconstruc-

tion of 3D density fields from a set of deviation fields 

measured by BOS. Please note that, here, 3DBOS 

means quantitative estimation of the density field vol-

ume, usually by providing density estimates on each 

vertex of some 3D voxel grid recovering the flow. This 

is not to be confused with the use of multiple BOS 

measurements for 3D localization of structures such as 

vortices within a large experimental volume (Bauknecht 

et al. 2015).
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1.2  Related works

When considering an axisymmetric flow, the 3D density 

field can be computed from one BOS measurement along 

a viewing direction orthogonal to the flow axis by inver-

sion of an Abel integral equation. This technique has been 

applied on the study of supersonic flow around cones 

(Venkatakrishnan and Meier 2004; Sourgen et al. 2004, 

2012), on jet experiments (Venkatakrishnan 2005; Ven-

katakrishnan and Suriyanarayanan 2009) and also for the 

study of rotor blades vortices (Kindler et al. 2007). All 

other instances of 3DBOS require the tomographic process-

ing of several BOS deviation fields obtained along various 

viewing directions—they will be called “BOS projections”. 

These projections can be recorded at several time instants 

by rotating a unique BOS setting (camera + background) 

with respect to the flow. Such approaches usually rely on 

the assumption of a stationary flow (Ota et al. 2010, 2011; 

Sourgen et al. 2012), although they have been used recently 

for periodic unstationary flows by synchronizing the meas-

urement with the flow period (Cabaleiro 2013; Christian 

et al. 2014). A relatively large number of BOS projections 

can then be obtained. For instance, Ota et al. (2010) and 

Sourgen et al. (2012) collect 19 BOS projections every 5° 

along a quarter of a circle around the jet.

Synchronized recording of a flow by several BOS set-

tings opens the way to 3D reconstruction of nonaxisym-

metric unstationary 3D flows. There are few references 

in this direction. The main piece of work originates from 

Ihrke and Magnor (2004), Ihrke (2007), Atcheson et al. 

(2008) and was motivated mainly by the problem of real-

istic rendering of transparent and turbulent media in com-

puter graphics. In this context, Atcheson et al. (2008) 

published the first experimental demonstration of 3DBOS 

using 12 cameras mounted in a half-circle configuration 

around a hot air flow produced by a gas burner. Zeb et al. 

(2011) studied heat convection with a three-camera sys-

tem, leading to a reconstruction with a rather low resolution 

and large artifacts. Alhaj and Seume demonstrate a copla-

nar 8-cameras system within a linear cascade wind tunnel 

(Alhaj and Seume 2010). The present paper, which fol-

lows several conference communications made since 2012 

(Todoroff et al. 2012, 2014; Le Sant et al. 2014), presents a 

quantitative 3DBOS method on coplanar and noncoplanar 

camera settings.

Let us briefly review the numerical approaches which 

have been put forward to reconstruct 3D density volume 

from a set of BOS measured deviation fields. As will be 

described more precisely in Sect. 2, deviations result from 

the integration of density gradients of the volume along 

each ray going from the background pattern to a pixel of the 

BOS camera. Most of the previous references address the 

reconstruction problem in two steps (Atcheson et al. 2008; 

Ota et al. 2010, 2011; Sourgen et al. 2012; Leopold et al. 

2013): tomographic reconstruction [or computed tomogra-

phy, CT (Kak and Slaney 2001)] of density gradients, then 

integration of the gradients to estimate the density volume. 

The classical approach for the first step of CT is Filtered 

Backprojection (FBP) using Fast Fourier Transform, which 

is fast and efficient if a large number of projections is avail-

able. FBP has been used in 3DBOS studies of stationary 

flows where several views can be done sequentially (Gold-

hahn and Seume 2007; Sourgen et al. 2012) with the same 

camera or even in axisymmetric cases (Venkatakrishnan 

and Suriyanarayanan 2009; Schröder 2009). Yet, FBP 

becomes impractical when dealing with limited number of 

projections, or with occultations (Kak and Slaney 2001). To 

tackle these problems, most recent studies Atcheson et al. 

(2008), Ota et al. (2010, 2011), and Leopold et al. (2013) 

propose methods based on the iterative resolution of a dis-

cretized system derived from the modelization of the ray 

propagation (see Sect. 2)—such methods are known as 

“algebraic reconstruction techniques” (ART) in CT.

The integration step is usually done after tomographic 

reconstruction of the three components of density gradients 

by solving a Poisson equation (Atcheson et al. 2008; Ota 

et al. 2011), whereas other authors propose to simply inte-

grate numerically along each direction of space (Leopold 

et al. 2013).

Finally, let us mention references which rely on a copla-

nar camera configuration and a parallel ray hypothesis so 

as to recast the 3D reconstruction problem as a stack of 

2D tomographic reconstructions, which are solved by a 

2D FBP (Goldhahn and Seume 2007; Alhaj and Seume 

2010) or ART (Zhang et al. 2015). These approaches use 

cameras with very limited field of view. In order to obtain 

independent 2D tomographic problems stack by stack, they 

systematically neglect the out-of-plane component of the 

deviation. Here we will consider general camera configura-

tions (larger field of view, noncoplanar configurations) and 

handle 3D deviations.

In contrast to previous works, we have proposed 

in Todoroff et al. (2012, 2014) a one-step approach applica-

ble to general configurations, where the 3D density field is 

directly estimated from BOS deviation fields. A discretized 

volume around the flow is defined and related to measured 

deviations through a global linear system under a paraxial 

assumption. Volume reconstruction then reduces to numeri-

cal inversion of this system. However, as well known in CT, 

the resulting linear system is not only underdetermined but 

also badly conditioned. Trying to solve it with usual least-

squares approaches leads to artifacts related to the missing 

projections and to amplification of the measurement noise. 

Regularization (Tikhonov and Arsenin 1977; Idier 2010) is 

a way to define a solution with better properties while fit-

ting the data. There are very few papers which explicitly 
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address the problem of regularizing the BOS reconstruc-

tion. In their tomographic reconstruction of density gradi-

ent components, Ihrke and Magnor (2004) and Atcheson 

et al. (2008) solve the system by a Conjugate Gradient 

(CG) algorithm with a support constraint on the sought 

volume to limit artifacts. Besides, they stop the algorithm 

before convergence to benefit from the good behavior of 

CG, which restores large-scale structures before small ones 

and thus regularizes the solution (Ihrke and Magnor 2004). 

Actually, most ART approaches of CT rely on such early 

stopping criterion to avoid noise amplification.

Here we propose to adopt a classical regularization 

framework (Idier 2010) where the estimated density vol-

ume is defined as the minimizer of a compound criterion 

made up of a data fidelity term and a regularization term. 

As we search directly for the density volume rather than 

for an auxiliary quantity such as the gradient, we can use 

the regularization term to enforce desirable properties of 

the density. We present results obtained with a classical 

Tikhonov smoothness regularization (Tikhonov and Ars-

enin 1977). The main tuning parameter is the regularization 

parameter which balances both terms of the criterion. We 

propose to select the regularizing parameter by a L-curve 

approach (Hansen 1992).

Another important aspect of 3DBOS is the computa-

tional burden associated with the reconstruction of large 

volumes. The problem at hand is the large-scale itera-

tive optimization of a convex, but possibly nonquadratic, 

criterion. As in Ihrke and Magnor (2004), we use a CG 

algorithm and restrict the number of variables as much 

as possible by selecting a tight mask (or support) for our 

reconstruction. In the CG algorithm, the most intensive part 

is to project and backproject data between the image planes 

and the discretized volume. Those two operations are 

highly parallel. Following several works in CT (Gross et al. 

2009; Pan et al. 2010), we propose here to implement the 

optimization on graphics processing units (GPU), which 

are massively parallel architectures providing high compu-

tational resource for a low cost.

Finally, the previous literature can also be analyzed in 

terms of the test cases used for validation. We focus here on 

jet flow experiments and propose a validation on both simu-

lated and real data. As one is forced to work with a very lim-

ited number of projections in 3DBOS, an important aspect 

of the validation is the choice of the camera configuration 

around the jet. Most references limit their study to data 

acquired with a planar configuration, where all camera cent-

ers belong to a unique plan, usually orthogonal to the main 

axis of the flow under study. In contrast, we provide results 

on noncoplanar configurations, not only from simulation but 

also from real data provided by a dedicated “geode-shaped” 

3DBOS test bench built at ONERA DMAE (Toulouse, 

France). Indeed, nonplanar configurations may lead to better 

results than planar ones for flows with arbitrary geometry or 

to restore details which are not aligned with the main axis 

of the jet. Moreover, these configurations are sometimes 

required when working in experimental facilities where opti-

cal accesses around the jet are constrained. Their study is 

then of primary interest to prepare the deployment of BOS in 

wind tunnels, which is our main concern for the future.

1.3  Contributions and outline of the paper

The main contribution of the paper is a numerical frame-

work for a one-step reconstruction 3D density volume 

from a limited number of deviation fields. This framework 

is described in Sect. 2 and validated on simulated data 

in Sect. 3. The second major contribution is an original 

experimental bench for the empirical study of noncoplanar 

configurations for 3DBOS, described in Sect. 4. Section 5 

describes the processing chain going from recorded images 

to deviation fields and also gives some details on geometri-

cal calibration of the cameras. In Sect. 6, we present recon-

structed density volumes from various datasets and discuss 

the results. Finally, concluding remarks and perspectives 

are given in Sect. 7.

2  A regularized framework for direct 3DBOS 

reconstruction

The BOS technique is based on observation of ray devia-

tions through a medium of inhomogeneous optical index n. 

The deviation angle of a ray is equal to the integral of the 

optical index gradient along the optical path. Optical index 

is then related to density via n − 1 = Gρ, where G is the 

Gladstone–Dale constant which is a function of the light 

wavelength and of the chemical composition of the flow. 

Globally, considering one ray going through the flow under 

study, the deviation ε writes

where the integration is done on the part of the light ray 

which is inside the flow and assuming that the optical index 

of the medium surrounding the flow is constant and equal 

to n0. This problem is generally nonlinear as the integra-

tion path depends on the unknown and variable density of 

the flow. Similar to most other references (except for Ihrke 

2007), we assume the paraxial hypothesis and integration is 

done along the (straight) unperturbed ray.

The linear problem associated with the BOS reconstruc-

tion can be formulated as follows. Let us suppose that K 

projections, each one made up of I × J deviation values, 

have been measured around a given volume. The problem 

then writes as a set of three coupled linear systems:

(1)ε =
G

n0

∫
ray⊂flow

∇ρ(s) ds,
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As we use a paraxial approximation, the deviations 

εu(i, j, k), u ∈ {x, y, z} result from integrations of the cor-

responding density gradient along the straight, unperturbed 

ray which crosses the kth camera at pixel (i, j). In practice, 

one first chooses the world frame coordinate system, which 

defines the (x, y, z) directions in (2), and the geometry of 

the reconstructed volume. Then, the cameras are calibrated 

in the world reference frame, which defines the 3D equa-

tion of each line segment associated with the observed 

deviations. This process is called the geometrical calibra-

tion of the experiment. It is discussed in Sect. 4.3.

2.1  Discretization

The goal of the discretization process is to derive a matrix 

approximation of the system (2) such as:

where, for u ∈ {x, y, z}, Du is a finite difference matrix 

along the u axis and εu collects all measured deviations 

along the u axis. T is a tomographic projection matrix: 

each line is made up of positive weights which describe the 

contribution of each volume element to a particular devia-

tion. The structure of T depends on the choice of the basis 

functions which are used to discretize the volume, i.e., to 

approximate it by a finite set of values. As usual in alge-

braic approaches of CT, we choose a piecewise constant 

discretization of the volume so that T is sparse, i.e., there 

are very few nonzero coefficients in each row of T. Know-

ing the geometrical calibration of the experiment, the com-

putation of T is straightforward. However, because this 

matrix is huge, it is not stored during the estimation but 

computed on the fly.

2.2  Regularization

Measurement of deviations is subject to errors and the 

observation system should then be written as

where b accounts for measurement noise. There are several 

issues with Eq. (4). First, A is neither square nor regular, 

so inversion should be done in the least-squares sense, i.e., 

by searching for a minimizer of �ε − Aρ�2— or some other 

weighted least-squares criterion if information is known 

(2)

εu(i, j, k) =
G

n0

�

ray(i,j,k)

∂ρ

∂u
ds







1 ≤ i ≤ I ,

1 ≤ j ≤ J ,

1 ≤ k ≤ K

with u ∈ {x, y, z}.

(3)ε =





εx

εy

εz





= Aρ = T





Dx

Dy

Dz



 ρ

(4)ε = Aρ + b.

about variable variance of the measurement noise. Second, 

as we aim to measure instantaneous flows, the noise can-

not be diminished by averaging several images. Finally, A 

inherits the ill-conditioning of the tomographic matrix T . 

It means that the effect of the noise will be amplified in 

the least-squares solution. Fidelity to the data is not suffi-

cient to obtain a reliable solution, and some regularization 

process should be applied (Idier 2010). One way to do so 

is to define the solution as the minimizer of a compound 

criterion:

where the first term is the classical least-squares crite-

rion and the second one is the regularization term, which 

encodes the a priori information on the volumic distribu-

tion of ρ. The balance between both terms is set by the 

regularization parameter � > 0. In this work, we consider 

first-order Tikhonov regularization (Tikhonov and Arsenin 

1977) implemented in our discretized setting by choosing 

the L2 norm of the density spatial gradient as the regulari-

zation term:

where D̄ is the upwinded discrete gradient operator and △ 

is the discrete Laplacian operator with appropriate bound-

ary conditions (see Sect. 2.3.2).

This leads to a well-behaved quadratic criterion. It 

enforces smoothness of the solution and reduces the effect 

of the noise but tends to oversmooth the density discontinu-

ities that may be present in the flow. Note that we have also 

considered Total Variation (TV) regularization, aimed at 

preserving discontinuities or edges in the reconstructed vol-

ume (Todoroff et al. 2012, 2014). In the case of convective 

flow with relatively small density gradients, a TV approach 

does not appear necessary to recover a good solution.

One issue with the use of a compound criterion such 

as (5) is to determine the optimal value of the regulariza-

tion parameter. In the case of quadratic regularization, the 

L-curve has been proposed to obtain the optimal regulari-

zation parameter (Hansen 1992; Idier 2010). The L-curve 

is obtained by plotting the gradient norm (6) as a function 

of the data term �Aρ − ε�2 for several density estimates 

obtained with various regularization parameters �. It can be 

shown that this curve is usually L-shaped (hence its name) 

and that a good choice for the parameter is the one corre-

sponding to the point of highest curvature. Indeed, at this 

point, both terms of the criterion (5) are close to their min-

imum. Note that the L-curve has been used by Ihrke and 

Magnor in tomographic reconstruction of flames (Ihrke 

and Magnor 2004) (and later by Atcheson et al. 2008 for 

3DBOS) to determine a stopping condition in the CG opti-

mization of a least-squares criterion.

(5)J (ρ) = �Aρ − ε�2 + �R(ρ),

(6)R(ρ) = �D̄ρ�2 = −ρT △ ρ,
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2.3  Optimization

Let us first give some typical dimensions of the problem 

at hand: we consider at least 10 image acquisitions with 

typically 5 × 10
5 displacement vectors per image, lead-

ing to a total number of collected deviation of the order of 

10
6. The size of the reconstructed volume is of the order 

of 10
7 voxels. Our long-term goal is to be able to recon-

struct gigavoxel volumes. In all cases, the optimization 

problem is of very large dimension, which means that 

only first-order descent methods such as gradient descent 

and conjugate gradients (CG) are affordable. In this sec-

tion, we present the chosen CG algorithm, constraints in 

force during the optimization and some details about GPU 

implementation.

2.3.1  Conjugate gradients algorithm

Conjugate gradients are a classical iterative strategy for 

solving large linear systems (Wright and Nocedal 1999). 

They have been used in 3DBOS by Ihrke and Magnor 

(2004), and Atcheson et al. (2008) for solving (4) in the 

least-squares sense, and it is also a classical algorithm in 

algebraic approaches to CT (Gross et al. 2009). We use it 

here to optimize criterion J  of Eq. (5), with the quadratic 

regularization term of Eq. (6).

The GC algorithm is an iterative descent technique, i.e., 

the estimated volume is updated at iteration k according to:

where dk is the descent direction which is defined recur-

sively by:

where

βk is selected in order to achieve a sequence of orthogonal 

descent directions (Wright and Nocedal 1999):

And αk achieves steepest descent in the direction dk:

We have observed empirically that GC indeed outper-

forms other gradient-based methods for minimizing crite-

rion (5).

(7)ρk = ρk−1 + αkdk

(8)dk = −gk + βkdk−1, with d0 = −g0,

(9)gk = ∇J (ρk) = 2

(

AT (Aρk − ε) − � △ ρk

)

(10)βk =
�gk+1�

2

�gk�
2

.

(11)αk = −
gT

k
dk

dT

k

(

AT A − �△
)

dk

.

2.3.2  Boundary conditions, valid rays and constraints

In practice, the reconstructed volume is in the shape of a 

parallelepiped which is significantly larger than the stud-

ied flow. It is then interesting to define a tighter working 

volume by defining a mask indicating the active voxels and 

the ones which are fixed during the optimization. This pro-

cess is obviously useful for limiting the computing cost. It 

also helps to avoid artifacts in the reconstructed volumes 

as demonstrated in Ihrke and Magnor (2004). In practice, 

2D masks are defined by the user on the deviation images 

and backprojected into a 3D mask: this process is described 

more precisely in Sect. 5.3. Usually, this mask is elongated 

along the principal axis of the flow. Boundary conditions 

are applied on the faces of the mask. They should be care-

fully chosen to avoid artifacts and differ depending on 

the faces of the mask, as illustrated in Fig. 1. If the face 

is known a priori to cut the flow (gray faces), it is associ-

ated with a free condition, while if it is known to be outside 

the flow support, a constant boundary condition is enforced 

with value ρ0. This concept is also used to select valid rays. 

When browsing a valid ray, no gradient density should be 

encountered outside the mask. As shown in Fig. 1, a valid 

ray can simply be defined as a ray going through the mask 

by crossing only “ρ0 boundaries” (i.e., no gray faces, as the 

green ray in Figure). This ensures that integration that is 

inside the mask, described in Sect. 2.3.3, is correct. Devia-

tion data associated with nonvalid rays, and the correspond-

ing lines of matrix A, are deleted from the criterion (5).

Setting appropriate boundaries to an outer value ρ0 

implicitly sets the reference value of ρ inside the recon-

structed flow. Indeed, the data term in (5) is invariant to 

the addition of a constant. The only term which constrains 

the average level of ρ is the regularization term through the 

constant boundary conditions.

Flow

Mask

Fig. 1  Mask and boundary conditions. Gray faces are a priori known 

to cut the flow, while other faces are outside the flow. Valid rays go 

through the mask without crossing gray faces (green ray), and other 

ones are rejected from the optimization (red ray)
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2.3.3  Parallel implementation on GPU

Here we briefly describe the parallel implementation of 

CG on GPU. GPU are massively parallel architectures, 

which involve a large number of elementary computa-

tion cores (e.g., 2688 cores in a recent Titan GPU) and a 

simple and adaptable hierarchy of registers, shared and 

global memories. Another interesting feature of GPUs is 

a texture memory which allows very fast interpolation. 

Originally designed for graphic applications only, they 

are since 2009 used for general programming, thanks to 

the release of high-level languages and associated SDK 

(CUDA, OpenCL). Implementation of CG algorithm 

on GPU amounts to identify the most computationally 

demanding operations, find a way to parallelize them and 

carefully control global memory access which is often the 

bottleneck of GPU. In our case, the costly operations are 

related to the observation matrix A, which is too large to 

be stored.

However, the CG only requires matrix-vector products 

such as Aρ and A
T
ε. Their parallel implementations are 

derived from projection and backprojection operations 

in CT which have been studied in several works (Gross 

et al. 2009; Gac et al. 2010). For both, we adopt a pixel-

wise ray tracing scheme (Gac et al. 2010), which means 

that the volume is traveled along the rays associated with 

the pixels of each image as sketched in Fig. 2. More pre-

cisely, the equation of the ray associated with a given pixel 

is determined by using the calibration parameters and the 

first intersection point P between the ray and the volume is 

located. From this point, the ray is finely discretized (the 

step s is typically chosen as 1/10 of the voxel size) and, 

for each spatial step, values are read (respectively, writ-

ten) in the crossed voxel to compute Aρ (resp. A
T
ε). In 

a sequential implementation, one would then consider the 

next pixel, and so on for all available images. Here, thanks 

to the massively parallel architecture of the GPU, thou-

sands of rays can be cast simultaneously, which drastically 

increases the efficiency of the calculation. The same GPU 

core also executes the spatial derivations using neighbor-

ing values of the density volume which can be stored in 

fast access local buffers. While multiple rays could be 

cast and averaged to account for integration on the pixel 

area, we have found that calculation of only one ray per 

pixel already provides sufficient accuracy and saves much 

computations.

3  Validation of the one-step inversion method 

on simulated data

3.1  Test case

We consider a simulated flow coming from a calculation 

of coplanar jet issued from the CoJen project (Vuillot et al. 

2008). The flow is generated by a coplanar double stream 

nozzle in static atmosphere. The inlet conditions are tran-

sonic. For primary flow, the stagnation temperature equals 

to 850 K with a pressure ratio of 1.4. For secondary flow, 

the stagnation temperature reaches 335 K and the pres-

sure ratio equals to 1.69. A 3D view and slices of the vol-

ume are presented in the first row of Fig. 10: the density 

is mostly lower than the ambient one since it was heated 

in the turbine. We can notice vortex ring formation in the 

mixing layer between the static surrounding air and the 

M = 0.9 secondary flow. The density field is fully 3D with 

no axisymmetry, and it is then a challenging case to recon-

struct with a limited number of views. The CFD computa-

tion is interpolated on a Cartesian grid of 300 × 300 × 300 

cubic voxels of edge length 3.6 mm.

Simulation of deviation data begins with the choice of 

the camera configuration. The basic configuration (denoted 

“coplanar180”) uses 12 cameras equally spaced along half 

circle as presented in Fig. 3 and in Table  1. For each of the 

12 cameras, its position is depicted by a green circle and 

the 4 rays defining the limits of the CCD are plotted in dif-

ferent colors.

Other 3D configurations are evaluated below. Each virtual 

camera is formed by 500 × 500 pixels, has a focal length of 

14 mm, a field of view of 24
◦ and points toward the center of 

the reconstructed volume at a distance of 3 m. This leads to 

voxel/pixel ratio of 1.4. For each camera, integrated devia-

tions for the three directions x, y, z are computed by tracing 

rays within the CoJen simulated volume. Figure 4 shows the 

simulated deviation field for camera 5 of Fig. 3. Note that the 

axial component εx is not negligible, which means that the 

problem cannot be formulated as a stack of 2D tomographic Fig. 2  Illustration of the pixelwise ray tracing operation
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problems, as proposed in Goldhahn and Seume (2007), Alhaj 

and Seume (2010), and Zhang et al. (2015).

To account for imperfect measurements, we add a 

white and homogeneous Gaussian noise to the deviations. 

We choose a noise variance σ = 1.0 × 10
−5 rad resulting 

from a displacement noise of 0.1 pixel, which is a typical 

order for random errors of digital image correlation meth-

ods. Of course, this is only a rough first-order model of the 

real errors occurring in estimated deviation fields, which 

are due to image noise, illumination effects, limitations of 

the optical flow method, etc. However, these effects will 

be accounted for in the real experiments. Our goal here is 

simply to assess the robustness of the method with respect 

to noisy data, which is crucial when dealing with ill-condi-

tioned systems.

3.2  Choice of the regularization parameter

As it is well known, approaches based on the minimiza-

tion of a compound criterion such as (5) rely on a “good” 

choice of the regularization parameter �. Effects of under- 

or over-regularization are illustrated in Fig. 5. Reconstruc-

tion with too low regularization are noisy, while over-reg-

ularized ones are too smooth with clearly underestimated 

density levels.

We adopt here the L-curve strategy of Hansen (1992) 

to automatically choose the regularization parameter. 

Figure 6 shows that, on the tested configuration, the 

point of highest curvature of the L-curve corresponds to 

a value (� = 1 × 10
−4), which also minimizes the mean-

squared error (MSE) to the true synthetic density volume. Fig. 3  Reference camera configuration for 3DBOS: “coplanar180” 

case

Table 1  Cameras angular 

positions
Camera Coplanar180 Shifted180 Cluster30

θ φ θ φ θ φ

01 1° 90° 1° 100° 0° 76.3°

02 16° 90° 16° 80° 0° 90°

03 31° 90° 31° 100° 0° 103.3°

04 46° 90° 46° 80° 10° 76.3°

05 61° 90° 61° 100° 10° 90°

06 76° 90° 76° 80° 10° 103.3°

07 91° 90° 91° 100° 20° 76.3°

08 106° 90° 106° 80° 20° 90°

09 121° 90° 121° 100° 20° 103.3°

10 136° 90° 136° 80° 30° 76.3°

11 151° 90° 151° 100° 30° 90°

12 166° 90° 166° 80° 30° 103.3°



 Exp Fluids  (2016) 57:13 

1 3

 13  Page 8 of 21

The reconstruction obtained with the optimal regulari-

zation parameter according to the L-curve criterion is 

shown on the second row of Fig.10. Iso-surfaces, XY and 

YZ slices of the reconstructed volume are represented, 

which should be compared with the views of the true 

volume located on the top row of Fig.10. The iso-surface 

representation shows that the morphology and levels of 

the true volume are well reconstructed. However, low 

density regions inside the jet are smoothed, particularly 

in the expanded part on the right, as can be seen on the 

XY slices in the second column. Artifacts related to the 

limited number of projections are visible in the YZ slice 

on the right. Those finger patterns are associated with the 

camera direction.

Fig. 4  Simulated deviation field in the geometry of camera 5 of the 

coplanar180 configuration shown in Fig. 3. From top to bottom, the x, 

y and z components of the deviation, color scale in radians.

Fig. 5  Choice of the regularization parameter. Top under-regular-

ized solution (� = 1.0 × 10
−6). Bottom over-regularized solution 

(� = 1.0 × 10
−3)
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3.3  Influence of the mask

As introduced in Sect. 2.3.2, we use a 3D mask to improve 

the efficiency of the regularization. In this section, we 

briefly discuss the influence of the mask on the 3D recon-

struction. In practice, the 3D mask is derived from 2D 

masks defined interactively by the user on the displacement 

images, as described in Sect. 5.3. The resulting reconstruc-

tion, denoted by “interactive mask”, is shown in the sec-

ond row of Fig. 10. On this simulated example, a tighter 

mask can be obtained by directly thresholding the true den-

sity volume. However, the resulting reconstruction is very 

close to the one deriving from the interactive mask and is 

not displayed.

Besides, we present on the third row of Fig. 10 a recon-

struction obtained without any mask. The reconstruction 

without the mask captures the general form of the flow but 

severely underestimates the density variations in the center. 

In the slices presented in the two rightmost columns, the 

energy of the reconstruction appears to be spread over the 

whole volume. This spreading phenomenon in the absence 

of a mask (or more generally, of a “support constraint”) is 

well known in tomography, and it has also been noticed 

by Ihrke et al. in their work on 3D density reconstruction 

(Ihrke 2007). Density profiles extracted from those recon-

structions are compared to the CFD reference on Fig. 7. 

Whereas the reconstruction without any mask smooths all 

the density gradients, the interactive mask result shows a 

good behavior, being able to capture most of the density 

variations. Huge variations like the fall toward density 

0.45  kg/m3 are restored, though the recovered gradients 

are smoother than the originals. One can also notice the 

Fig. 6  Choice of the regularization parameter. Top L-curve. Bottom 

MSE with respect to the true volume. Regularization parameter val-

ues are written along the curve

Fig. 7  Profiles of density along slices extracted from the volumes 

presented in the three first lines of Fig. 10. The positions of the 

profiles are indicated in the CFD XY Slice of Fig. 10. Top Slice 1 

(Y = −15 voxels). Bottom Slice 2 (X = −105 voxels)
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presence of overshoots in density levels at the edge of the 

3D mask on the lower plot of Fig. 7. These results provide 

empirical evidence that using a mask not only acceler-

ates the computations but also significantly improves the 

reconstruction.

3.4  Geometrical configuration of the cameras

Not surprisingly, Fig. 8 shows that, for the coplanar con-

figuration, the use of a higher number of cameras yields 

a better reconstruction. However, even for a complex vol-

ume such as the one studied here, the marginal gain also 

decreases. Moreover, it is unrealistic to assume that 50 

cameras could be used in a 3DBOS setting. Therefore, we 

limit our study to 12 cameras and investigate various geo-

metrical configurations in this section.

The coplanar180 is compared with a variant where cam-

eras are shifted along the main axis of the jet and rotated 

so as to all point toward the same point in the middle of 

the flow. The tilt angle of the camera is 10° (to be com-

pared with the vertical field of view 24°). This configura-

tion called “shifted180” is shown in Fig. 9 (left). Another 

configuration, depicted in Fig. 9 (right) is the “cluster30” 

where all cameras are confined in an angular region of 

30° × 30°, which can represent situations where opti-

cal accesses are very limited. The detailed orientation of 

the cameras for all tested configurations can be found in 

Table 1.

Results with noncoplanar configurations are presented 

in the lower part of Fig. 10. All results are obtained with 

an optimal 3D mask and using the regularization param-

eter derived from the L-curve strategy. The result obtained 

with the “shifted180” configuration appears quite similar 

to the “coplanar180”, even if its MSE is slightly higher. 

Indeed, for flows having a geometrical main axis (such as 

jet flows), the coplanar configuration, where all cameras 

belong to a plane orthogonal to the main axis, appears 

optimal. But the result indicates that varying the cameras’ 

viewpoint around this configuration does not significantly 

alter the quality of the reconstruction. In contrast, the “clus-

ter30” result shows that when the variety of available view-

points is too restricted the reconstruction is very poor and 

information is spread out along camera axis. In such situ-

ations, one would probably reduce the number of cameras 

and consider 2D BOS only, 3D reconstruction being pos-

sible only for axisymmetric objects.

3.5  Conclusion of the simulation study

The proposed one-step density reconstruction has been 

assessed on simulated deviation data. Using 12 cameras 

providing various angles on the object, a good recon-

struction can be obtained. In our quadratic regularization 

setting, the L-curve strategy is efficient to determine the 

correct regularization parameter. While several param-

eter studies have been conducted, we have only presented 

the effect of the geometrical configuration of the camera 

which is of primary interest for practical use of 3DBOS 

in experimental facilities. As could be anticipated, for 

the studied jet, the best reconstruction is obtained by a 

coplanar configuration in the main axis orthogonal plane 

and when covering as much as possible the circle of view 

around the object.
Fig. 8  Residual error per voxel as a function of the number of cam-

eras used in the reconstruction process

Fig. 9  Noncoplanar camera configurations. a Shifted180 b Cluster30



Exp Fluids  (2016) 57:13  

1 3

Page 11 of 21  13 

4  Experimental bench for instantaneous 3DBOS: 

the Geode

The Geode facility dedicated to the study of instationary 

flow by 3DBOS has been designed and built in ONERA 

DMAE. This bench is a small rhombicuboctahedron, 8 of 

its faces are triangular and 18 are square. The diameter Z 

of the Geode is 3.20 m which makes it possible to recon-

struct large flows. As it can be seen in Fig. 11, half of the 

Geode is used to support the cameras, while the other half 

supports the backgrounds.

4.1  Camera setup

This installation is equipped with 12 JAI cameras BM500 

GE. The cameras are mounted all around the structure, and 

each of them is fixed on a ball joint allowing the camera 

to rotate in every direction. The design of this 3DBOS test 

bench allows setting up various camera configurations. All 

cameras are mounted with 23 mm focal length Schneider 

C-mount optics. These optics allow for the visualization of 

a common cubic volume with edge length of about 50 cm 

placed at the center of the geode. The main characteristics 

of the cameras and main optical parameters are summarized 

in Table 2. During the experiment, a uniform illumination is 

provided by four 500 W halogen spots. The amount of light 

being limited, all the tests were conducted with an aperture 

corresponding to a f-number f# = 2. The cameras focus is set 

on the backgrounds which results in a depth of field of 26 cm.

The cameras are synchronized with a TTL generator 

which can handle 24 independent signals. To be able to 

record 10 fps with 5 Mpx images, on each camera, we used 

a C5G124-24 Enterasys switch connected to 20 Gb/s Intel 

network card. All images are stored in the RAM memory 

during the acquisition and then transferred on SSD disks. 

Following this process, we perform an acquisition of 900 

images per camera in 4 min 30 s:1 min 30 s for the acquisi-

tion and 3 min for the storage.

4.2  Background

Multiple backgrounds patterns have been tested. The wavelet 

background (Atcheson et al. 2008), whose main advantage 

relies on its multiscale random content, did not perform well 

in areas with large density gradients. Random distribution of 

points is a simple and efficient way to design backgrounds; 

however, they can lead to local inaccuracies in the estimated 

displacement fields because the number of dots inside a cor-

relation window is not constant. To overcome this issue, we 

have designed a new background pattern named “semi-ran-

dom background” (Fig. 12b). It is obtained by small-scale 

random perturbations of dots around a regular grid pattern: 

the regular pattern guarantees a large number of dots inside 

the correlation window, while random perturbation prevents 

matching ambiguities during correlation.

In the facility, the backgrounds have been printed on alu-

minum plates and cut at the exact size of the triangle and 

square surfaces. They are held with small screws with a 

spring nut positioned in the slot of the BOSCH beams.

4.3  Geometric setting and calibration

The geometrical configuration is sketched in Fig. 13. Each 

camera observes the background plate in front of it, where 

the focus is set, and the flow under study is placed halfway 

between the cameras and the background. From the dimen-

sions of the bench and the camera parameters, the diameter 

of the circle of confusion due to defocus at the flow location 

can be estimated at 6 mm—approximately half the diame-

ter of the aperture f /f#. It means that the smallest observ-

able spatial scales of the gradients of ρ are of the order of 

6 mm. In order to mitigate this effect, some authors (Bichal 

and Thurow 2014) propose to focus the cameras halfway 

between the background and the flow. Such a configuration 

would lead to a better circle of confusion (about 4  mm), 

but this would be compensated by a reduced deviation-to-

displacement sensitivity (factor 1.5) and a lower accuracy of 

estimated displacement vectors due to a blurred background 

image. So the overall gain of this alternate configuration is 

difficult to foresee. A better overall sensitivity could prob-

ably be obtained but would require an optimization of the 

experiment which falls outside the scope of the present study.

3DBOS reconstruction as described in this paper 

requires synchronous observation of the flow by a set of 

cameras, typically 12 cameras in our bench. To compute 

and optimize criterion (5), the equation of each ray associ-

ated with some pixel of the image plane of a camera should 

be calibrated in the coordinate frame fixed to the recon-

structed volume (called the working frame in the sequel). 

This operation requires a geometrical calibration of the 

multicamera setting in the same coordinate frame, i.e., 

the identification of all internal parameters of the cameras 

(focal lengths, principal points, distortion parameters) and 

of all camera poses (position and orientation).

Multicamera calibration is a well-documented problem, 

and developments specific to the 3DBOS have been dis-

cussed in Le Sant et al. (2014). Here, as in several other 

experiments, we use as a calibration body (CB), a simple 

white plane with regularly spaced black dots. Three extra 

dots are added to capture the orientations of the CB. The 

basic principle of our multicamera calibration is to record 

images of a CB moved around the common field of view 

of the cameras and to minimize the reprojection errors of 

all visible features of the CB with respect to calibration 

parameters. However, there are three specific difficulties in 

the calibration of a 3DBOS bench.
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First, depending on the camera configuration, it is often 

not possible that the CB is viewed from all cameras. How-

ever, in all tested configurations, all cameras are located in 

the same half-space and the CB is always seen at least by 3 

cameras. In this case, it is still possible to calibrate all cam-

era parameters in a consistent way by exploiting a chain of 

correlation between views having CB features in common.

The second issue is illustrated in Fig. 13: the region 

where the CB can be viewed by several cameras is the 

workspace (where the flow will be put), located halfway 

between the cameras and the background. In the Geode, 

illumination was limited and we were forced to work with 

a large aperture, leading to severely blurred images of the 

CB. In  Le Sant et al. (2014), we have compared several 

calibration strategies including in-focus images of the 

CB together with blurred images of the CB located in the 

workspace. It has been found that using in-focus images 

is not necessary and that an accurate calibration can be 

obtained with blurred images of the CB located in various 

positions inside the workspace. In practice, the calibra-

tion process requires about 50 images per camera which 

are recorded, while the CB is moved by hand into the 

workspace.

The third difficulty is related to the workload of the 

calibration. Indeed, there are several hundreds of images 

to process which is at least an order of magnitude higher 

than for other optical measurement methods such as PIV 

or TomoPIV. A real-time calibration is not required, but the 

Fig. 11  The Geode, a 3DBOS experimental facility

Table 2  Camera JAI BM500 GE characteristics and acquisition 

parameters

Sensor CCD, 2/3”

Pixel resolution 2456 × 2058

Pixel size 3.45 µm × 3.45 µm

Acquisition frequency 10 images/s

Exposure time 750 µs

Aperture f# = 2

(a) (b)

Fig. 12  The semi-random background guarantees a fixed number 

of dots per correlation window with random arrangement inside the 

window. In contrast, the random background (Poisson distribution) 

may occasionally have too few dots inside a correlation window. Both 

backgrounds presented here have the same number of dots. a Random 

background. b Semi-random background

Fig. 13  Sketch of the geometrical configuration of cameras in a typi-

cal 3DBOS setting. The cameras are focused on the backgrounds

Fig. 10  Ground truth density volume from CFD (first row) compared 

with various reconstructed volumes: using the coplanar 180 camera 

configuration and an interactively user-defined mask (second row) or 

no mask (third row); using the shifted 180 configuration (fourth row) 

and the cluster 30 configuration, both with a user-defined mask. All 

reconstruction are obtained with � = 1.0 × 10
4. From left to right: 

3D representation of 3 iso-density surfaces 0.5 (red), 0.9 (green), 1.1 

(blue); (X, Y) slice; (Y, Z) slice

◂
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calibration must be carried out within a reasonable delay 

(say below 1h). This issue has been solved using a mixed 

CPU-GPU implementation [see  Le Sant et al. (2014)].

5  From images to deviation fields

In this Section we describe the operations needed to meas-

ure deviation fields in a typical multicamera 3DBOS exper-

iment. We discuss about the generic experimental meth-

odology and processing chain which have been developed 

to conduct 3DBOS reconstruction in several experimental 

facilities at ONERA. Numerical values such as camera 

parameters or actual distance between camera and back-

ground panels related to the particular geode 3DBOS bench 

are given in Sect. 4.

We list below the steps of the acquisition and processing 

chain, which are also summarized in Fig. 14. More details 

are given in the referenced Sections.

1. Multicamera calibration (Sect. 4.3)

2. Acquisition of background images with and without 

the flow

3. Correction of geometrical distorsions of the images

4. Estimation of image 2D displacement fields by optical 

flow calculation (Sect. 5.1)

5. Conversion of 2D displacements into 3D deviations 

(Sect. 5.2)

6. 3D mask creation and selection of valid rays (Sect. 5.3)

5.1  Displacements estimation

Images of a textured background are recorded without flow 

(reference frame) and with the flow (perturbed frame) in 

between the camera and the background. The image dis-

placement field between these two frames is computed 

using the FOLKI software developed by ONERA (Plyer 

et al. 2014), which is described within the PIV context 

in Champagnat et al. (2011). FOLKI relies on the Lucas-

Kanade paradigm of iterative registration of local inter-

rogation windows. It provides a dense displacement field 

(i.e., one vector per image pixel) although, as discussed 

in Champagnat et al. (2011), its spatial resolution is limited 

by the size of the interrogation window, which is the main 

parameter of the method. The norm of an experimental 2D 

displacement field is shown in Fig. 16. Thanks to its highly 

parallel structure, the GPU implementation of FOLKI is 

computationally very efficient: as shown in Fig. 7 of Plyer 

et al. (2014), 5 Mpixels images are processed in 30 ms on 

a Titan GPU. It is of high interest in 3DBOS where several 

large images (e.g., 12 images of 5 Mpixels) have to be cor-

related at each acquisition time.

Fig. 14  Processing chain relat-

ing the recorded frames to the 

deviation fields which are fed to 

the 3D reconstruction software

Reference frame Perturbed frame

Op�cal flow 

calcula�on

Valid Devia�ons

fields

Calibra�on data

2D masks

drawing

3D mask

computa�on

Compu�ng

valid rays

3D reconstruc�on

Conversion 

displacement

to devia�on

3D mask
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5.2  Converting image displacement into deviations

Figure 15 recalls the principle of BOS measurement. A 

detail at position x in the perturbed image frame is associ-

ated with point P in the background pattern. Point P was 

previously imaged at position x + u(x) in the reference 

frame. Conversely, from the estimation of the displace-

ment u(x), and knowing the camera calibration, one is able 

to locate P. We assume that some external envelope of the 

flow, represented as a gray square in Fig. 15, is known. This 

envelope is a surface separating the flow, i.e., the region 

of space where the optical index can vary, and the outer 

region where the optical index is assumed to be constant. 

In practice, we simply use the boundaries of the 3D vol-

ume of reconstruction as an envelope. The deviation angle 

ε of Eq. 1 is the difference between the directions of the ray 

(Iout, O) outgoing from the envelope and of the ingoing ray 

(P,Iin):

where aAB stands for the unit vector associated with the 

segment (A, B). However, it requires the knowledge of the 

point Iin where the ray coming from P impacted the enve-

lope. This position is not known accurately, in contrast to 

the position of point Iout which can be obtained from the 

ray associated with pixel x. The deviation is then approxi-

mated by

5.3  3D mask

The 3D mask is helpful to increase the efficiency of the 

optimization. The 3D mask computation is done interac-

tively from camera displacement fields. For each camera, 

the user draws a 2D mask on the image of the estimated 

displacement norm (see Fig. 16). Each voxel of the volume 

is projected into the image plane of each camera and incre-

mented if the projection is inside the corresponding 2D 

mask. Voxels are retained if the obtained total number is 

ε = aIoutO − aPIin

(12)ε ≈ aIoutO
− aPIout

.

above some threshold, which means that they are inside the 

2D mask of a given number of cameras. Finally, valid devi-

ations are selected. For each candidate deviation, the cor-

responding ray is casted toward the volume. The faces of 

the 3D mask crossed by the ray are identified. If one of the 

crossed faces cuts the flow as shown in Fig. 1, the corre-

sponding ray and its associated deviation data are removed. 

This process allows to update the 2D masks as shown in the 

lower image of Fig. 16.

6  Experimental results and discussion

We present here results obtained on four convective flows: 

a candle plume, a hot jet generated by a heat gun, and two 

helicoidal plumes obtained by rotation of a gas burner and 

of an ember. These tests allow assessing our method on 

various density volumes with weak gradients and complex 

Fig. 15  Principle of BOS measurement. A point P of the background 

is imaged in position x with the flow and in x + u(x) without

Fig. 16  Upper row Norm of the displacement field estimated by 

FOLKI and 2D mask drawn by the user. Lower row Final 2D mask 

after removing nonvalid rays
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3D structures. For each case, the flow is recorded using 

the Geode with 12 cameras put in different 3D configu-

rations. Each camera acquires 500 frames allowing the 

reconstruction of both instantaneous and mean density 

fields. Mean fields are derived from averaged displace-

ment images. Moreover, atmospheric pressure and tem-

perature are measured during the tests in order to evaluate 

the reference density outside the flow. Figures of volume 

sizes and processing times are gathered in Table 3: the 

largest reconstructed volume is about 130 megavoxel, 

and its reconstruction takes approximately 8 h with 500 

iterations.

6.1  Plume of a candle

The plume flow is simply generated by a burning candle. 

Combustion of liquid wax transported by capillary flow 

through the porous wick results in a flame with a highly 

nonlinear temperature profile in which local temperatures 

in the candle flame can exceed 1400
◦
C. Heat transfer from 

the candle flame generates a hot plume led by natural con-

vection. Figure 18 illustrates the 3D reconstruction of the 

convection flow observed a few centimeters above the flame 

of a candle using a coplanar configuration of the cameras. 

The size of mesh is about 18 megavoxels for a resolution 

of 1 mm. The regularization parameter � = 5 × 10
−5 was 

automatically chosen according to the L-curve shown on 

Fig. 17.

The reconstructed air flow is consistent with the 

evolution of a slowly ascending hot plume classically 

observed above a candle’s flame. In particular, the flow 

transition is clearly observed. Neglecting the combustion 

products, the reconstruction shows a density range com-

prised between 0.7 and 1.2 kg/m3 (a proper comparison 

on temperature profiles can not be done here because of 

the influence of the different chemicals species). After 

the destabilization of the flow, the turbulence induces 

a very quick increase in the density. In order to check 

the quality of the reconstruction, ray tracing has been 

performed through the reconstructed volume and the 

generated deviations were compared to the measured 

ones. In Fig. 19, we provide measured/generated 2D 

deviation fields and also two profiles of both fields along 

lines passing across the flow, one in the core of the 

flame, the other in the turbulent region. A very good fit 

between measured deviations and generated ones can be 

observed: only a slight smoothing of small-scale struc-

tures is noticeable in the turbulent part. One can con-

clude that the proposed reconstruction method exploits 

the deviation data almost fully.

6.2  Hot plume

The reconstruction of an instantaneous hot air plume gener-

ated by a heat gun is presented in Fig. 20. The hot gun pro-

vides a hot jet with an inlet velocity of 5 m/s and an esti-

mated temperature of about 650 K. The Reynolds number 

based on inlet diameter is about 3700. The jet was scanned 

according to a coplanar distribution of the cameras. Set-

ting the exposure time to 750 µs leads to a maximal spatial 

displacements around 5 mm, and this is consistent with the 

6-mm-diameter circle of confusion induced by defocus at 

the flow location, see Sect. 4.3.

Despite its complex nonaxysymmetric structure, the jet 

is well reconstructed and appears larger and more turbulent 

than the candle plume. In Fig. 21, the mean density field, 

obtained by processing averaged deviation images (500 

samples), is presented. Boundary artifacts occur at the inlet 

Table 3  Experimental results: size of the reconstructed volumes and 

computation times

Volume grid Computation 

time

Candle 207 × 422 × 213

(18.6 M)

2.2 h

Hot Jet (inst.) 470 × 344 × 343

(55M)

5.9 h

Hot Jet (mean) 336 × 472 × 361

(57.3 M)

6.3 h

Rotating gas burner 511 × 449 × 566

(130M)

7.8 h

Rotating ember 560 × 421 × 420

(99 M)

10.6 h

Fig. 17  L-curve of the 3D reconstruction of a candle plume for a 

coplanar configuration
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Fig. 18  Optimal reconstruction (� = 5 × 10
−5) of a candle plume for a “coplanar180” configuration: 3D representation of 3 iso-density surfaces 

0.7, 0.9, 1.1, respectively, represented in red, green and blue; (Y, Z) slice; (X, Y) slice
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Fig. 19  Comparison between input εx deviations (top left) and computed deviations through the reconstructed volume (top right). Slices at Y = 

1300 pixels (bottom left) and Y = 1700 pixels (bottom right)
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and outlet edges of the domain. These misleading altera-

tions are a consequence of the reduction in available data 

near the boundaries. Indeed, the black polygon indicates 

the limit of the common domain seen by all the 12 cameras. 

Outside, the lack of measurement alters the reconstructed 

solution. Inside the common polygon, the 3D reconstruc-

tion is consistent.

The same flow has also been recorded using the non-

coplanar “shifted180” configuration of cameras shown in 

Fig. 9. Results are very close to the ones obtained with the 

coplanar ones as could be expected from the simulation 

study. Differences are not significant and are most likely 

due to variations of SNR in the recorded images.

The density amplitudes obtained in the mean field 

reconstruction are compared to profiles acquired with ther-

mocouples in Fig. 22. We sample the hot air plume every 

2 mm with a type K thermocouple using a timeout interval 

of 60 s in order to reduce the impact of the heat gun tem-

perature fluctuations. Neglecting pressure variations, the 

density can be derived from the temperature measurement 

using the ideal gas relation. Whereas the agreement is fairly 

good, the comparison between both profiles shows a slight 

underestimation of the BOS result for the profile nearest to 

the base of the jet (Y = 230 mm). Such an underestimation 

of high gradients is classical with quadratic regularization 

(it has been also observed in Fig. 7 in the simulation study), 

and it could be mitigated by using a tighter mask.

6.3  Rotating flows

In order to significantly increase the complexity of flow 

topology, different heat sources have been fixed on a rotat-

ing arm with a very slow rotation speed. Tests have been 

conducted for both a butane torch and an ember. Results 

are presented, respectively, in Figs. 23 and 24. In the first 

case, the turbulent plume describes a helicoidal path and 

disappears quickly due to the high diffusion induced by 

the rotation. The reconstructed density reveals a tempera-

ture field at less than 373 K, illustrating the high sensitiv-

ity of the proposed 3DBOS method which appears well 

adapted to such convective flows with very weak density 

gradients.

Fig. 20  Optimal reconstruction (� = 1 × 10
−4) of a hot jet for a “Shifted180” configuration: 3D representation of 3 iso-density surfaces 0.95, 

1.05, 1.15, respectively, represented in red, green and blue; (Y, Z) slice; (X, Y) slice

Fig. 21  Optimal reconstruction (� = 1 × 10
−4) of the mean hot jet for a “shifted180” configuration: 3D representation of 3 iso-density surfaces 

0.95, 1.05, 1.15, respectively, represented in red, green and blue; (Y, Z) slice; (X, Y) slice
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Fig. 22  Comparison between thermocouple measurements and density field reconstructed by 3DBOS for two Y positions from the inlet plan of 

the hot jet

Fig. 23  Reconstruction of an ember helicoidal plume using the 

“coplanar180” configuration. Regularization parameter � = 1 × 10
−4 

is chosen according to the L-curve strategy. The reconstructed vol-

ume is represented from three different viewpoints using 3 iso-den-

sity surfaces 1.155, 1.165, 1.175, respectively, drawn in red, green 

and blue

Fig. 24  Reconstruction of a gaz burner helicoidal plume for a 

“coplanar180” configuration. Regularization parameter � = 1 × 10
−4 

is chosen according to the L-curve strategy. The reconstructed vol-

ume is represented from three different viewpoints using 3 iso-den-

sity surfaces 0.97, 1.07, 1.17, respectively, drawn in red, green and 

blue
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In the second case, the inlet flow is larger and more 

intense. The helicoidal path is also very well reconstructed 

with larger density gradients: the central hole in the flow 

structure is apparent, showing again the good sensitivity 

of the method. Some artifacts associated with the bound-

ary of the common field of views of the cameras appear 

on the side of the reconstructed domain. Let us emphasize 

that this example is of very large dimensions, with close to 

130 megavoxels reconstructed by casting more than 500 

millions of rays every iteration. This huge number of rays 

explains the longer computational time needed on this par-

ticular test case.

7  Conclusion

In this paper, we have presented a new reconstruction 

method to determine the 3D instantaneous density fields 

from several BOS images taken simultaneously. This 

method relies on a regularized framework for the estima-

tion of 3D density volume directly from a limited number 

of deviation fields. This approach allows to account for 

prior information on the quantity of interest: the density 

volume. To solve the resulting huge optimization problem, 

a CG algorithm implemented on GPU hardware was pro-

posed. This approach is efficient, with volumes of more 

than 130 megavoxels reconstructed from more than 100 

million deviations in a few hours. We believe that further 

optimization of the software will allow us to reach volumes 

of one gigavoxel in the near future.

We have realized a bench dedicated to the study of 

three-dimensional instantaneous flows by 3DBOS, includ-

ing the case of noncoplanar configurations of cameras. 3D 

reconstructions of convection flows characterized by weak 

density gradients and by a transitional or turbulent behav-

ior have been presented. Not only the topology of the flow 

was correctly captured, but, for very slow flows, consistent 

estimations of the temperature field at the origin of density 

variations were obtained.

We intend to conduct further studies about sensitivity 

and accuracy of 3DBOS for various configurations of the 

cameras with these software and experimental resources. 

Another research direction concerns the extension of our 

approach to flows with high density gradients, so as to 

eventually address the compressible domain. Preliminary 

results using an approximated Total Variation regularization 

to enhance the density discontinuities in the reconstruc-

tion were presented in Todoroff et al. (2012, 2014). Going 

further will require to let aside the paraxial approximation 

and tackle the nonlinear inversion problem. Finally, ongo-

ing work focuses on the deployment the proposed 3DBOS 

method in different ONERA wind tunnels, together with 

other optical measurement techniques such as PIV.
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